Подпишитесь на телеграмм-канал про ИИ в образовании: Егошин | Кеды профессора
Курс находится на модерации. Данные могут быть неактуальны.
Сложность
Сложность
Начинающий
Тип обучения
Тип обучения
Профессия
Формат обучения
Формат обучения
С проверкой домашнего задания

Стоимость курса

217 800 ₽
есть рассрочка

Кто такой Data Scientist

Специалист по Data Science обрабатывает большие объемы неструктурированной информации и превращает ее в упорядоченный набор данных.
Дата-сайентист может:

  • Предсказать, окупится ли новый проект
  • Оценить будущий спрос на товары и услуги
  • Улучшить системы рекомендаций в соцсетях и сервисах
  • Создать приборы для автоматической постановки диагноза пациенту
  • Усовершенствовать транспортное движение
  • Построить систему распознавания лиц

Дата-сайентист использует методы науки о данных (Data Science), строит и тестирует математические модели. Он находит закономерности, дает прогнозы и предлагает лучшие решения в разных сферах.

Что вы получите после обучения

Приобретаемые навыки
1
Data Scientist
3
Pandas
4
Sklearn
5
Keras
6
EDA

Вас будут обучать

Руководитель группы вычислительной химии в BIOCAD.
Создает сервисы и модели машинного обучения, которые помогают химикам быстрее выпускать лекарства

Эксперт в машинном обученииПреподаёт дисциплину «Наука о данных для юристов»
Работал в Яндексе —Senior ML Engineer, Joom — ML Engineer, Mail.ru Group R&D — Engineer.

Senior ML-Engineer, МТС

Основные компетенции — временные ряды, Deep Learning и нейронные сети.
Занимается консалтингом в сфере AI.

Образовательная организация

Школа по работе с данными SkillFactory обучение Big Data, Data Science, Machine Learning, Data Engineering и AI

Программа курса

БАЗА
На этом этапе вы изучите основы программирования на Python, научитесь предобрабатывать и анализировать данные, а также познакомитесь с основными задачами дата-сайентиста.

Введение

Вы сможете сформулировать для себя реальные цели обучения, узнаете, в чем ценность DS для бизнеса, познакомитесь с основными задачами дата-сайентиста и разберетесь, как строится разработка любого DS-проекта.
INTRO-1. Как учиться эффективно — онбординг в обучение
INTRO-2. Обзор профессии. Типы задач в Data Science. Этапы и подходы к разработке Data Science проекта

Проектирование разработки

Вы научитесь работать с основными типами данных с помощью языка Python и сможете применять в повседневной работе циклические конструкции, условные операторы и функции.
PYTHON-1. Основы Python
PYTHON-2. Погружение в типы данных
PYTHON-3. Условные операторы
PYTHON-4. Циклы
PYTHON-5. Функции и функциональное программирование
PYTHON-6. Практика
PYTHON-7. Гид по стилю в среде Python (бонусный)

Работа с данными

На этом этапе вы овладеете базовыми навыками работы с данными: научитесь подготавливать, очищать и преобразовывать данные так, чтобы они были пригодны для анализа. Кстати, об анализе: вы будете анализировать данные с помощью популярных библиотек Matplotlib, Seaborn, Plotly.
PYTHON-8. Инструменты Data Science
PYTHON-9. Библиотека NumPy
PYTHON-10. Введение в Pandas
PYTHON-11. Базовые приемы работы с данными в Pandas
PYTHON-12. Продвинутые приемы работы с данными в Pandas
PYTHON-13. Очистка данных
PYTHON-14. Визуализация данных
PYTHON-15. Принципы ООП в Python и отладка кода (дополнительный модуль)
Проект 1. Аналитика датасета по закрытым вопросам

Подгрузка данных

Вы сможете выгружать данные из разных форматов и источников. А поможет вам в этом SQL — язык структурированных запросов. Вы научитесь использовать агрегатные функции, соединения таблиц и сложные объединения.
PYTHON-16. Как выгружать данные из файлов разных форматов
PYTHON-17. Получение данных из веб-источников и API
SQL-0. Привет, SQL!
SQL-1. Основы SQL
SQL-2. Агрегатные функции
SQL-3. Соединение таблиц
SQL-4. Сложные объединения
Проект 2. Подгрузка новых данных. Уточнение анализа

Статистический анализ данных

Разведывательный анализ данных (EDA) — вот, что окажется в центре вашего внимания. Вы познакомитесь со всеми этапами такого анализа и научитесь проводить его с помощью библиотек Statsmodels, Scikit Learn, Seaborn, Matplotlib, SciPy, Pandas. Кроме того, вам удастся поработать на Kaggle, популярном сервисе по участию в соревнованиях.
EDA-1. Введение в разведывательный анализ данных. Алгоритмы и методы EDA
EDA-2. Математическая статистика в контексте EDA. Типы признаков
EDA-3. Проектирование признаков (Feature Engineering)
EDA-4. Статистический анализ данных на Питоне
EDA-5. Статистический анализ данных на Питоне. Часть 2
EDA-6. Проектирование экспериментов
EDA-7. Площадка Kaggle
Проект 2

Введение в машинное обучение

Вы познакомитесь с ML-библиотеками для моделирования зависимостей в данных. Вы сможете обучить основные виды ML-моделей, провести валидацию, интерпретировать результаты работы и выбрать важные признаки (feature importance).
ML-1. Теория машинного обучения
ML-2. Обучение с учителем: регрессия
ML-3. Обучение с учителем: классификация
ML-4. Обучение без учителя: кластеризация и техники снижения размерности
ML-5. Валидация данных и оценка модели
ML-6. Отбор и селекция признаков
ML-7. Оптимизация гиперпараметров модели
ML-8. ML Cookbook
Проект 3. Задача классификации

ОСНОВНОЙ БЛОК
Линейная алгебра, математический анализ, дискретная математика — звучит страшно, но не пугайтесь: разберем все эти предметы и научим с ними работать! На втором этапе вы погрузитесь в математику и основы машинного обучения, узнаете больше о профессиях DS, а также благодаря профориентации выберете трек обучения второго года.

Математика и машинное обучение. Часть 1

Вы сможете решать практические задачи с помощью ручного счета и Python (векторные и матричные вычисления, работа с множествами, исследование функций с помощью дифференциального анализа).
MATH&ML-1. Линейная алгебра в контексте Линейных методов. Часть 1
MATH&ML-2. Линейная алгебра в контексте Линейных методов. Часть 2
MATH&ML-3. Математический анализ в контексте задачи оптимизации. Часть 1
MATH&ML-4. Математический анализ в контексте задачи оптимизации. Часть 2
MATH&ML-5. Математический анализ в контексте задачи оптимизации. Часть 3
Проект 4. Задача регрессии

Математика и машинное обучение. Часть 2

Вы познакомитесь с основными понятиями теории вероятности и математической статистики, алгоритмами кластеризации, а также научитесь оценивать качество произведенной кластеризации и представлять результаты в графическом виде.
MATH&ML-6. Теория вероятностей в контексте наивного байесовского классификатора
MATH&ML-7. Алгоритмы на основе деревьев решений
MATH&ML-8. Бустинг & Стекинг
MATH&ML-9. Кластеризация и техники снижения размерности. Часть 1
MATH&ML-10. Кластеризация и техники снижения размерности. Часть 2
Проект 5. Ансамблевые методы

ML в бизнесе

Вы научитесь использовать ML-библиотеки для решения задачи временных рядов и рекомендательных систем. Вы сможете обучить ML-модель и провести ее валидацию, а также создать работающий прототип и запустить модель в веб-интерфейсе. А еще получите навыки A/B-тестирования, чтобы можно было оценить модель.
MATH&ML-11. Временные ряды. Часть 1
MATH&ML-12. Временные ряды. Часть 2
MATH&ML-13. Рекомендательные системы. Часть 1
MATH&ML-14. Рекомендательные системы. Часть 2
PROD-1. Подготовка модели к Production
PROD-2. Прототип Streamlit+Heroku
PROD-3. Бизнес-понимание. Кейс
Проект 6. Тема на выбор: временные ряды или рекомендательные системы

УРОВЕНЬ PRO
На третьем этапе вы познакомитесь с одним из методов машинного обучения — глубоким обучением (DL). А также вас ждет полноценный блок выбранной специализации: вы можете освоить навыки машинного обучения (ML), познакомиться с рутиной CV (компьютерного зрения).

Профориентация

ML или CV: на этом этапе вам наконец предстоит сделать выбор, по какому пути двигаться дальше. Мы расскажем о каждой специализации и предложим решить несколько практических задач, чтобы вам было проще определиться.

Трек ML Engineer

В ML-треке вы научитесь решать углубленные задачи машинного обучения, овладеете компетенциями дата-инженера, отточите навык работы с библиотеками Python. Также вы научитесь создавать MVP (минимально жизнеспособную версию продукта), узнаете все тонкости вывода ML-модели в продакшн и узнаете, как работают ML-инженеры в реальной жизни.
Введение в Deep Learning
Основы Data Engineering
Дополнительные главы Python и ML
Экономическая оценка эффектов и разработка MVP
ML в Production
Углубленное изучение ML-разработки и выпускной проект по выбранной теме

Трек CV Engineer

На CV-треке вы научитесь решать такие задачи компьютерного зрения, как классификация изображений, сегментация и детекция, генерация и стилизация картинок, восстановление и повышение качества фотографий. Кроме того, вы узнаете, как выкатывать нейронные сети в продакшн.
Введение в Deep Learning
Основы Data Engineering
Дополнительные главы Python и ML
Экономическая оценка эффектов и разработка MVP
ML в Production
Углубленное изучение ML-разработки и выпускной проект по выбранной теме

Deep Learning и нейронные сети

Где применяются нейросети? Как обучить нейронную сеть? Что такое Deep Learning? Ответы на эти вопросы вы узнаете в бонусном разделе DL.

Введение в Data Engineering

Вы узнаете, в чем различие ролей дата-сайентиста и дата-инженера, какими инструментами пользуется последний в своей работе, какие задачи ежедневно решает. Слова «снежинка», «звезда» и «озеро» обретут новые значения :)

Рейтинг курса

3.1
рейтинг
0
0
0
0
0

Может быть интересно

обновлено 18.12.2024 12:33
Data Scientist

Data Scientist

Оставить отзыв
Поделиться курсом с друзьями