Курс находится на модерации. Данные могут быть неактуальны.
Тип обучения
Тип обучения
Курс
Зач. единицы
Зач. единицы
2
Сертификат
Сертификат
1 800 ₽ для получения

Стоимость курса

бесплатно
нет рассрочки
Настоящий курс посвящен явлению ферромагнетизма. Ферромагнетизмом называют магнитоупорядоченное состояние вещества, в котором атомные магнитные моменты параллельны друг другу, так что вещество обладает самопроизвольной намагниченностью. Благодаря ферромагнетизму некоторые материалы (например, железо) способны притягиваться к магнитам или же сами становиться постоянными магнитами. Явление ферромагнетизма играет значительную роль в современных технологиях и является физической основой для создания различных электрических и электронных устройств, например, трансформаторов, генераторов, электромагнитов, магнитных накопителей информации, жестких дисков, спинтронных устройств и т.д. Однако ферромагнетизм в отсутствии внешнего магнитного поля устанавливается не при любой температуре, а лишь при температуре ниже критической, называемой температурой Кюри. Разумеется, для каждого материала температура Кюри имеет свое значение. Ответственным за явление ферромагнетизма является обменное взаимодействие, стремящееся установить магнитные моменты соседних атомов или ионов параллельно друг другу. Обменное взаимодействие – это чисто квантовомеханический эффект, не имеющий аналога в классической физике. В рамках курса мы постараемся разобраться с микроскопической природой ферромагнетизма, узнать о его экспериментальных проявлениях и построить его квантовомеханическую теорию. Курс ориентирован на студентов магистратуры, в том числе иностранных, для которых английский язык является родным, желающих повысить свой уровень в области теоретической физики.

Вас будут обучать

Кандидат физико-математических наук, Доцент Должность: Доцент Отделения нанотехнологий в электронике, спинтронике и фотонике офиса образовательных программ
Окончил МИФИ в 2007 году по специальности «Физика конденсированного состояния вещества», второе высшее образование по специальности «Комплексная защита объектов информатизации» также получил в МИФИ в 2010 году. В том же 2010 году защитил диссертацию на соискание степени кандидата физико-математических наук. Диссертационная работа посвящена исследованию наноструктур с нетрадиционной геометрией углеродного каркаса. Область научных интересов включает теорию твердого тела, вычислительные методы в квантовой химии и компьютерное моделирование наноструктур. Обладатель ряда премий и грантов за научную деятельность. Среди них Премия по поддержке талантливой молодежи в номинации Нанофизика и Нанотехнологии, Грант молодым преподавателям НИЯУ МИФИ и Гранты Президента Российской Федерации. Образование В 2007 году окончил МИФИ по специальности «Физика конденсированного состояния вещества», получив квалификацию «инженер-физик». Диплом ВСГ №1351683.

Образовательная организация

НИЯУ МИФИ – один из лучших национальных университетов, осуществляющих подготовку элитных специалистов для атомной сферы, науки, ИТ и других высокотехнологичных секторов экономики России.

Миссия университета - генерация, распространение, применение и сохранение научных знаний в интересах решения глобальных проблем XXI века.

НИЯУ МИФИ – признанный лидер в прорывных направлениях:

- ядерные исследования и технологии;

- лазерные, плазменные и пучковые технологии;

- СВЧ-наноэлектроника;

- нанобиотехнологии, биомедицина и медицинская физика;

- информационные технологии.

Университет развивает перспективные направления:

- космические исследования и технологии;

- управляемый термоядерный синтез;

- материалы для ядерного и космического применения.

Уникальные преимущества образования в НИЯУ МИФИ:

- Уникальные образовательные программы, ориентированные на профессии будущего и перспективные научные направления

- Обучение в сотрудничестве с ведущими мировыми корпорациями и крупными научными центрами мира

- Собственные современные уникальные экспериментальные установки и центры

- Стажировки студентов в ведущих научных центрах и лабораториях мира, участие в международных научноисследовательских и инновационных проектах, экспериментах Mega science. Среди них ATLAS, ALIСE, CMS в CERN; FAIR, XFEL в DESY (Германия); ITER (Франция); ICECUBE, PAMELA (Италия); STAR и PHENIX (США); T2K (Япония).

- Модульность, междисциплинарность и индивидуализация обучения

- Соответствие образовательных программ международным стандартам инженерного образования

Новый элемент системы российского образования — открытые онлайн-курсы — cможет перезачесть любой университет. Мы делаем это реальной практикой, расширяя границы образования для каждого студента. Полный набор курсов от ведущих университетов. Мы ведём системную работу по созданию курсов для базовой части всех направлений подготовки, обеспечивая удобное и выгодное для любого университета встраивание курса в свои образовательные программы
«Открытое образование» – это образовательная платформа, предлагающая массовые онлайн-курсы ведущих российских вузов, которые объединили свои усилия, чтобы предоставить возможность каждому получить качественное высшее образование.

Любой пользователь может совершенно бесплатно и в любое время проходить курсы от ведущих университетов России, а студенты российских вузов смогут засчитать результаты обучения в своем университете.

Программа курса

Модуль 1

  • Введение. Классификация фазовых переходов

Модуль 2

  • Магнитный момент атома
  • Физические величины, характеризующие магнитные свойства вещества
  • Классификация веществ по магнитным свойствам

Модуль 3

  • Изолированный магнитный момент во внешнем магнитном поле
  • Система невзаимодействующих локальных магнитных моментов во внешнем магнитном поле
  • Закон Кюри
  • Эффективное поле Вейсса
  • Обменное взаимодействие
  • Взаимодействие двух локальных магнитных моментов

Модуль 4

  • Модель Гейзенберга и модель Изинга
  • Приближение среднего поля в модели Изинга
  • Уравнение Кюри-Вейсса. Закон Кюри-Вейсса
  • Ферромагнитный переход в модели Изинга. Температура Кюри. Параметр порядка
  • Зависимость параметра порядка от температуры в модели Изинга для ферромагнетика
  • Основное и возбужденное состояние ферромагнетика в модели Изинга

Модуль 5

  • Свободная энергия ферромагнетика в модели Изинга в приближении среднего поля. Свободная энергия ферромагнетика вблизи критической температуры
  • Спонтанное нарушение симметрии при фазовых переходах парамагнетик/ферромагнетик
  • Феноменологическая теория фазовых переходов второго рода (теория Ландау)
  • Теплоемкость и магнитная восприимчивость ферромагнетика в модели Изинга в приближении среднего поля
  • Критические индексы

Модуль 6

  • Точное решение одномерной модели Изинга
  • Приближение среднего поля в антиферромагнитной модели Изинга. Температура Нееля
  • Магнитная восприимчивость изинговского антиферромагнетика в приближении среднего поля

Модуль 7

  • Решение задач. Заключение

Рейтинг курса

3.5
рейтинг
0
0
0
0
0

Может быть интересно

обновлено 21.04.2024 01:33
Введение в теорию ферромагнетизма

Введение в теорию ферромагнетизма

Оставить отзыв
Поделиться курсом с друзьями